Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1374116, 2024.
Article in English | MEDLINE | ID: mdl-38515537

ABSTRACT

Background: Cryptosporidiosis is an opportunistic parasitic disease widely distributed worldwide. Although Cryptosporidium sp. causes asymptomatic infection in healthy people, it may lead to severe illness in immunocompromised individuals. Limited effective therapeutic alternatives are available against cryptosporidiosis in this category of patients. So, there is an urgent need for therapeutic alternatives for cryptosporidiosis. Recently, the potential uses of Eugenol (EUG) have been considered a promising novel treatment for bacterial and parasitic infections. Consequently, it is suggested to investigate the effect of EUG as an option for the treatment of cryptosporidiosis. Materials and methods: The in silico bioinformatics analysis was used to predict and determine the binding affinities and intermolecular interactions of EUG and Nitazoxanide (NTZ) toward several Cryptosporidium parvum (C. parvum) lowa II target proteins. For animal study, five groups of immunosuppressed Swiss albino mice (10 mice each) were used. Group I was left uninfected (control), and four groups were infected with 1,000 oocysts of Cryptosporidium sp. The first infected group was left untreated. The remaining three infected groups received NTZ, EUG, and EUG + NTZ, respectively, on the 6th day post-infection (dpi). All mice were sacrificed 30 dpi. The efficacy of the used formulas was assessed by counting the number of C. parvum oocysts excreted in stool of infected mice, histopathological examination of the ileum and liver tissues and determination of the expression of iNOS in the ileum of mice in different animal groups. Results: treatment with EUG resulted in a significant reduction in the number of oocysts secreted in stool when compared to infected untreated mice. In addition, oocyst excretion was significantly reduced in mice received a combination therapy of EUG and NTZ when compared with those received NTZ alone. EUG succeeded in reverting the histopathological alterations induced by Cryptosporidium infection either alone or in combination with NTZ. Moreover, mice received EUG showed marked reduction of the expression of iNOS in ileal tissues. Conclusion: Based on the results, the present study signified a basis for utilizing EUG as an affordable, safe, and alternative therapy combined with NTZ in the management of cryptosporidiosis.

2.
Saudi Pharm J ; 32(1): 101917, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38226347

ABSTRACT

Burkholderia anthina is a pathogenic bacterial species belonging to the Burkholderiaceae family and it is mainly considered the etiological agent of chronic obstructive pulmonary diseases associated with cystic fibrosis, due to being intrinsic antibiotic resistant making it difficult to treat pulmonary infections. Hence increased rate of antibiotic-resistant bacterial species vaccine development is the priority to tackle this problem. In research work, we designed a multi-epitope-based vaccine construct against B. anthina using reverse vaccinology immunoinformatics and biophysical approaches. Based on the subtractive proteomic screening of core proteins we identified 3 probable antigenic proteins and good vaccine targets namely, type VI secretion system tube protein hcp Burkholderia, fimbria/pilus periplasmic chaperone and fimbrial biogenesis outer membrane usher protein. The selected 3 proteins were used for B and B cells B-derived T-cell epitopes prediction. In epitopes prediction, different epitopes were predicted with various lengths and percentile scores and subjected to further immunoinformatics analysis. In immunoinformatics screening a total number of 06, IDDGNANAL, KTVKPDPRY, SEVESGSAP, YGGDLTVEV, SVSHDTNGR, and GSKADGYQR epitopes were considered good vaccine target candidates and shortlisted for vaccine construct designing. The vaccine construct was designed by joining selected epitopes with the help of a GPGPG linker and additionally linked with cholera toxin b subunit adjuvant to increase the efficacy of the vaccine construct the sequence of the said adjuvant were retrieved from protein data bank through its (PDB ID: 5ELD). The designed vaccine construct was evaluated for its physiochemical properties analysis in which we reported that the vaccine construct comprises 216 amino acids with a molecular weight of 22.37499 kilo Dalton, 15.55 instability index (II) is computed, and this classifies that the vaccine construct is properly stable. VaxiJen v2.0 web server predicted that the vaccine construct is probable antigenic in nature with 0.6320 predicted value. Furthermore AllerTOP v. 2.0 tool predicted that the designed vaccine construct is non allergic in nature. Molecular docking analysis was done for analysis of the binding affinity of the vaccine construct with TLR-2 (PDB ID: 6NIG), the docking results predicted 799.2 kcal/mol binding energy score that represents the vaccine construct has a good binding ability with TLR-2. Moreover, molecular dynamic simulation analysis results revealed that the vaccine construct and immune cell receptor has proper binding stability over various environmental condition, i.e. change in pressure range, temperature, and motion. After each analysis, we observed that the vaccine construct is safe stable, and probably antigenic and could generate an immune response against the target pathogen but in the future, experimental analysis is still needed to verify in silico base results.

3.
J Biomol Struct Dyn ; : 1-9, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064307

ABSTRACT

The fibroblast growth factor receptor 3 (FGFR3) is warranted as a promising therapeutic target in bladder cancer as it is described in 75% of papillary bladder tumors. Considering this, the present study was conducted to use different approaches of computer-aided drug discovery (CADD) to identify the best binding compounds against the active pocket of FGFR3. Compared to control pyrimidine derivative, the study identified three promising lead structures; BDC_24037121, BDC_21200852, and BDC_21206757 with binding energy value of -14.80 kcal/mol, -12.22 kcal/mol, and -11.67 kcal/mol, respectively. The control molecule binding energy score was -9.85 kcal/mol. The compounds achieved deep pocket binding and produced balanced interactions of hydrogen bonds and van der Waals. The FGFR3 enzyme residues such as Leu478, Lys508, Glu556, Asn562, Asn622, and Asp635. The molecular dynamic (MD) simulation studies additionally validated the docked conformation stability with respect to FGFR3 with a mean root mean square deviation (RMSD) value of < 3 Å. The root mean square fluctuation (RMSF) complements the complexes structural stability and the residues showed less fluctuation in the presence of compounds. The Poisson-Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods revalidated compounds better binding and highlighted van der Waals energy to dominate the overall net energy. The docked stability was additionally confirmed by WaterSwap and AMBER normal mode entropy energy analyses. In a nutshell, the compounds shortlisted in this study are promising in term of theoretical binding affinity for FGFR3 but experimental validation is needed.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-24, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37937770

ABSTRACT

Leishmaniasis affects more than 12 million humans globally and a further 1 billion people are at risk in leishmaniasis endemic areas. The lack of a vaccine for leishmaniasis coupled with the limitations of existing anti-leishmanial therapies prompted this study. Cheminformatic techniques are widely used in screening large libraries of compounds, studying protein-ligand interactions, analysing pharmacokinetic properties, and designing new drug molecules with great speed, accuracy, and precision. This study was undertaken to evaluate the anti-leishmanial potential of some organoselenium compounds by quantitative structure-activity relationship (QSAR) modeling, molecular docking, pharmacokinetic analysis, and molecular dynamic (MD) simulation. The built QSAR model was validated (R2train = 0.8646, R2test = 0.8864, Q2 = 0.5773) and the predicted inhibitory activity (pIC50) values of the newly designed compounds were higher than that of the template (Compound 6). The new analogues (6a, 6b, and 6c) showed good binding interactions with the target protein (Pyridoxal kinase, PdxK) while also presenting excellent drug-likeness and pharmacokinetic profiles. The results of density functional theory, MD simulation, and molecular mechanics generalized Born surface area (MM/GBSA) analyses suggest the favourability and stability of protein-ligand interactions of the new analogues with PdxK, comparing favourably well with the reference drug (Pentamidine). Conclusively, the newly designed compounds could be synthesized and tested experimentally as potential anti-leishmanial drug molecules.Communicated by Ramaswamy H. Sarma.

5.
Infect Drug Resist ; 16: 6661-6671, 2023.
Article in English | MEDLINE | ID: mdl-37849790

ABSTRACT

Introduction: World Health Organization (WHO) considers Fascioliasis as a neglected tropical disease that requires global efforts for disease control. Data from the genetic characterization of Fasciola population shed light on the spread of infections among animals which could help in the development of effective parasite control. The aim of the present work was to genetically characterize Fasciola adult worms isolated from sheep in Saudi Arabia by sequence analysis of ITS-1 region. Methods: A total of 12,653 slaughtered sheep in Jeddah city, Saudi Arabia were examined for the presence of Fasciola spp. adult worms. The ITS-1 region of all parasites was amplified and sequenced. Results: Overall, 12 variants DNA sequences were obtained. The variance of isolates ranged from 0.00771 to 0.34405. BLAST search showed that all obtained sequences were Fasciola hepatica and had >99.3% similarity with F. hepatica isolates from Spain and USA (from different hosts other than sheep). Phylogenetic analysis showed that Fasciola isolates were closely related to isolates from different countries. Discussion: The current study showed that F. hepatica was the only spp. isolated from sheep in Jeddah. Further studies from different localities in Saudi Arabia are needed to help in the development of disease control.

6.
Curr Org Synth ; 20(8): 910-918, 2023.
Article in English | MEDLINE | ID: mdl-37638584

ABSTRACT

AIM: The purpose of this paper is to synthesize and characterize two new direct dyes based on chromenes derivatives. BACKGROUND: The synthesis of carboxyethyl chitosan (CECS) by the reaction of chitosan and acrylic acid via Michael's addition reaction was conducted. Cotton fabrics were treated with CECS to enhance the exhaustion of dye, fastness properties, and antimicrobial activity of dyed fabric. METHODS: Chitosan (CS) and acrylic acid were combined in Michael's addition process to successfully produce N-carboxyethylchitosan (CECS). Then, the cotton was treated with different concentrations of carboxyethyl chitosan (0.5-5 wt.%) and then dyed by synthesized mono azo and diazo direct dyes based on chromene derivatives. RESULTS AND DISCUSSION: The results regarding dyeing and antibacterial activity indicated highquality dyeing properties, However, direct dyes showed higher exhaustion and fixation values, fastness properties, and the colorimetric CIE L*a*b* C*h° data of the dyed cotton fabric. CONCLUSION: Cotton fabrics treated with carboxyethyl chitosan and dyed with direct dyes were found to have higher antibacterial activity upon a concentration of 2.5 wt.%. In addition, the antibacterial activity towards Gram-positive bacteria was reported to be more than Gram-negative bacteria.


Subject(s)
Chitosan , Chitosan/pharmacology , Sodium Chloride , Sodium Chloride, Dietary , Anti-Bacterial Agents/pharmacology , Benzopyrans , Coloring Agents
7.
PLoS Negl Trop Dis ; 17(7): e0011447, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37410712

ABSTRACT

BACKGROUND: Although, approximately 30% of the world's population is estimated to be infected with Toxoplasma gondii (T. gondii) with serious manifestations in immunocompromised patients and pregnant females, the available treatment options for toxoplasmosis are limited with serious side effects. Therefore, it is of great importance to identify novel potent, well tolerated candidates for treatment of toxoplasmosis. The present study aimed to evaluate the effect of Zinc oxide nanoparticles (ZnO NPs) synthesized using Zingiber officinale against acute toxoplasmosis in experimentally infected mice. METHODS: The ethanolic extract of ginger was used to prepare ZnO NPs. The produced ZnO NPs were characterized in terms of structure and morphology using Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), UV- spectroscopy and scanning electron microscopy (SEM). The prepared formula was used in treatment of T. gondii RH virulent strain. Forty animals were divided into four groups, with ten mice per group. The first group was the uninfected, control group. The second group was infected but untreated. The third and the fourth groups received ZnO NPs and Spiramycin orally in a dose of 10 mg/kg and 200 mg/kg/day respectively. The effect of the used formulas on the animals survival rate, parasite burden, liver enzymes -including Alanine transaminase (ALT) and aspartate transaminase (AST)-, nitric oxide (NO) and Catalase antioxidant enzyme (CAT) activity was measured. Moreover, the effect of treatment on histopathological alterations associated with toxoplasmosis was examined. RESULTS: Mice treated with ZnO NPs showed the longest survival time with significant reduction in the parasite load in the livers and peritoneal fluids of the same group. Moreover, ZnO NPs treatment was associated with a significant reduction in the level of liver enzymes (ALT, AST) and NO and a significant increase in the antioxidant activity of CAT enzyme. SEM examination of tachyzoites from the peritoneal fluid showed marked distortion of T. gondii tachyzoites isolated from mice treated with ZnO NPs in comparison to untreated group. T. gondii induced histopathological alterations in the liver and brain were reversed by ZnO NPs treatment with restoration of normal tissue morphology. CONCLUSION: The produced formula showed a good therapeutic potential in treatment of murine toxoplasmosis as demonstrated by prolonged survival rate, reduced parasite burden, improved T. gondii associated liver injury and histopathological alterations. Thus, we assume that the protective effect observed in the current research is attributed to the antioxidant capability of NPs. Based on the results obtained from the current work, we suggest greenly produced ZnO NPs as a chemotherapeutic agent with good therapeutic potential and high levels of safety in the treatment of toxoplasmosis.


Subject(s)
Nanoparticles , Parasites , Toxoplasma , Toxoplasmosis , Zinc Oxide , Zingiber officinale , Female , Mice , Animals , Zinc Oxide/therapeutic use , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antioxidants , Toxoplasmosis/drug therapy , Toxoplasmosis/parasitology , Nanoparticles/chemistry , Disease Models, Animal
8.
Front Microbiol ; 14: 1175844, 2023.
Article in English | MEDLINE | ID: mdl-37234545

ABSTRACT

Zoonotic virus spillover in human hosts including outbreaks of Hantavirus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) imposes a serious impact on the quality of life of patients. Recent studies provide a shred of evidence that patients with Hantavirus-caused hemorrhagic fever with renal syndrome (HFRS) are at risk of contracting SARS-CoV-2. Both RNA viruses shared a higher degree of clinical features similarity including dry cough, high fever, shortness of breath, and certain reported cases with multiple organ failure. However, there is currently no validated treatment option to tackle this global concern. This study is attributed to the identification of common genes and perturbed pathways by combining differential expression analysis with bioinformatics and machine learning approaches. Initially, the transcriptomic data of hantavirus-infected peripheral blood mononuclear cells (PBMCs) and SARS-CoV-2 infected PBMCs were analyzed through differential gene expression analysis for identification of common differentially expressed genes (DEGs). The functional annotation by enrichment analysis of common genes demonstrated immune and inflammatory response biological processes enriched by DEGs. The protein-protein interaction (PPI) network of DEGs was then constructed and six genes named RAD51, ALDH1A1, UBA52, CUL3, GADD45B, and CDKN1A were identified as the commonly dysregulated hub genes among HFRS and COVID-19. Later, the classification performance of these hub genes were evaluated using Random Forest (RF), Poisson Linear Discriminant Analysis (PLDA), Voom-based Nearest Shrunken Centroids (voomNSC), and Support Vector Machine (SVM) classifiers which demonstrated accuracy >70%, suggesting the biomarker potential of the hub genes. To our knowledge, this is the first study that unveiled biological processes and pathways commonly dysregulated in HFRS and COVID-19, which could be in the next future used for the design of personalized treatment to prevent the linked attacks of COVID-19 and HFRS.

9.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108214

ABSTRACT

The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/metabolism , Gene Editing , Neoplasms/genetics , Neoplasms/therapy , Technology
10.
Animals (Basel) ; 12(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36428326

ABSTRACT

The present study used Litchi chinensis peel extract to synthesize silver nanoparticles (AgNPs). This technique is eco-friendly and can be performed in a single step; thus, it has attracted great attention for NPs biosynthesis. Herein, we biosynthesized AgNPs with L. chinensis peel extract and examined their anticoccidial activity in rabbit hepatic coccidiosis induced by E. stiedae infection. Thirty-five rabbits were allocated into seven groups: a healthy group (G1), an infected control group (G2), four groups infected before treatment with 10 mg/kg L. chinensis peel extract-biosynthesized AgNPs (G3, G5) or 50 mg/kg amprolium (G4, G6), and rabbits infected after two weeks of pretreatment with 10 mg/kg L. chinensis eel extract-biosynthesized AgNPs (G7). In this study, both pre-and post-treatment with AgNPs produced a substantial reduction in fecal oocyst output, liver enzyme levels, and histopathological hepatic lesions relative to the infected group. In conclusion, L. chinensis peel extract-prepared AgNPs should be considered harmless and efficient in the cure of hepatic coccidiosis in rabbits.

11.
Front Chem ; 10: 964446, 2022.
Article in English | MEDLINE | ID: mdl-36304744

ABSTRACT

SARS-CoV-2 triggered a worldwide medical crisis, affecting the world's social, emotional, physical, and economic equilibrium. However, treatment choices and targets for finding a solution to COVID-19's threat are becoming limited. A viable approach to combating the threat of COVID-19 is by unraveling newer pharmacological and therapeutic targets pertinent in the viral survival and adaptive mechanisms within the host biological milieu which in turn provides the opportunity to discover promising inhibitors against COVID-19. Therefore, using high-throughput virtual screening, manually curated compounds library from some medicinal plants were screened against four main drivers of SARS-CoV-2 (spike glycoprotein, PLpro, 3CLpro, and RdRp). In addition, molecular docking, Prime MM/GBSA (molecular mechanics/generalized Born surface area) analysis, molecular dynamics (MD) simulation, and drug-likeness screening were performed to identify potential phytodrugs candidates for COVID-19 treatment. In support of these approaches, we used a series of computational modeling approaches to develop therapeutic agents against COVID-19. Out of the screened compounds against the selected SARS-CoV-2 therapeutic targets, only compounds with no violations of Lipinski's rule of five and high binding affinity were considered as potential anti-COVID-19 drugs. However, lonchocarpol A, diplacol, and broussonol E (lead compounds) were recorded as the best compounds that satisfied this requirement, and they demonstrated their highest binding affinity against 3CLpro. Therefore, the 3CLpro target and the three lead compounds were selected for further analysis. Through protein-ligand mapping and interaction profiling, the three lead compounds formed essential interactions such as hydrogen bonds and hydrophobic interactions with amino acid residues at the binding pocket of 3CLpro. The key amino acid residues at the 3CLpro active site participating in the hydrophobic and polar inter/intra molecular interaction were TYR54, PRO52, CYS44, MET49, MET165, CYS145, HIS41, THR26, THR25, GLN189, and THR190. The compounds demonstrated stable protein-ligand complexes in the active site of the target (3CLpro) over a 100 ns simulation period with stable protein-ligand trajectories. Drug-likeness screening shows that the compounds are druggable molecules, and the toxicity descriptors established that the compounds demonstrated a good biosafety profile. Furthermore, the compounds were chemically reactive with promising molecular electron potential properties. Collectively, we propose that the discovered lead compounds may open the way for establishing phytodrugs to manage COVID-19 pandemics and new chemical libraries to prevent COVID-19 entry into the host based on the findings of this computational investigation.

12.
Biomed Pharmacother ; 155: 113788, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36271566

ABSTRACT

Botanicals with remarkable pharmacological properties include Zingiber officinale Roscoe [Zingiberaceae] (ginger) and Gymnanthemum amygdalinum (Delie) Sch. Bip [Asteraceae] (bitterleaf). The plants are frequently used as teas and decoctions, and have been studied in the treatment of various illnesses. Thus, this study investigated the in vitro antioxidant activities and chemical fingerprints of ginger and bitter leaf infusions separately and as a combination. In addition, we assessed the effects of the tea infusions on rat liver and kidney indices. The findings from this study showed that the bitterleaf infusion had the highest phenolic content (21.77 ± 3.140 µg gallic acid equivalent/mg) in comparison with that of ginger (15.17 ± 1.50 µg gallic acid equivalent/mg) and their combination (8.81 ± 0.48 µg gallic acid equivalent/mg). The ginger infusion had the highest flavonoid content (547.15 ± 1.17 µg quercetin equivalent/mg), which was preceded by bitterleaf (473.02 ± 10.48 µg quercetin equivalent/mg) and the ginger and bitterleaf infusion (415.08 ± 4.15 µg quercetin equivalent/mg). Furthermore, our results showed that the tea infusions had no significant effect on the liver function indices (ALT and AST) compared to the control. In contrast, the rat plasma urea significantly increased in the groups given bitterleaf and a combination of ginger and bitterleaf infusions, while creatinine significantly decreased in the group that received the combined form of the infusion. The GC-MS analysis of ginger and bitterleaf infusions revealed that n-hexadecanoic acid, oleic acid, and ergosterol were most abundant in the bitterleaf infusion. At the same time, gingerol, 2-butanone, and 4-(4-hydroxy-3-methoxyphenyl) were the most abundant in the ginger infusion. Together, the findings are not only evidence in support of the medicinal value of these plants but also reinforce their prospects as nutriceuticals.


Subject(s)
Zingiber officinale , Animals , Rats , Zingiber officinale/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Quercetin , Oleic Acid , Palmitic Acid , Creatinine , Flavonoids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gallic Acid , Ergosterol , Urea , Tea
13.
Neurodegener Dis ; 22(3-4): 122-138, 2022.
Article in English | MEDLINE | ID: mdl-36288689

ABSTRACT

INTRODUCTION: Alzheimer's disease is a form of dementia which affects majority of the people. It is characterized by memory loss and other cognitive function disabilities and is one of the most challenging neurodegenerative disorders to treat because of its progressive nature. The disease affects millions of people all around the world, and the number of those affected is expanding every day. In the previous study, the 4-phthalimidobenzenesulfonamide derivatives were synthesized as AChE and BChE inhibitors, and here, we were aiming to further reporting in silico studies of these compounds for efficient drug discovery process and to find out the potential lead compounds. METHODS: In silico characterization included density functional theory (DFT) studies, 3D-QSAR, ADMET properties, molecular docking, and molecular dynamic simulations. The geometries of all derivatives were optimized using B3LYP method and 6-311G basis set. RESULTS: The findings of the current study revealed that 4-phthalimidobenzenesulfonamide derivatives exhibited a reactive electronic property which is essential for anticholinesterase activity. Moreover, optimized structures were subjected to molecular docking studies with targeted protein. The compounds 2c and 2g showed excellent binding score of -37.44 and -33.67 kJ/mol with BChE and AChE, respectively, and exhibited strong binding affinity. The potent derivatives produced stable complex with amino acid residues of active pocket of both BChE and AChE. The stability of protein-ligand complexes was determined by molecular dynamic simulation studies, and results were found in correlation with molecular docking findings. CONCLUSION: Findings of the current study suggested that these derivatives are potent inhibitors of cholinesterase enzyme.

14.
Infect Drug Resist ; 15: 4877-4886, 2022.
Article in English | MEDLINE | ID: mdl-36051657

ABSTRACT

Background: In Saudi Arabia, more than US$ 0.2 million annual losses are caused by liver condemnations due to fascioliasis. Data obtained from the genetic characterization of Fasciola population sheds light on parasite transmission which could eventually help in development of effective parasite control measures. So, the aim of this study was to investigate the genetic diversity of Fasciola spp. isolated from cattle in Saudi Arabia by sequence analyses of COI gene. Materials and Methods: A total of 325 cows slaughtered at the central municipal abattoir in Jeddah city, Jeddah Province, Saudi Arabia were examined for fascioliasis in the period from 1st of June to 1st of July 2020. DNA was extracted from adult Fasciola worms and used for PCR and DNA sequence using a primer pair targeting COI gene. Analysis of the obtained sequences was done using BLAST search and phylogenetic analysis. Results: Bovine fascioliasis was diagnosed in 18 out of 325 cattle (5.5%). Forty-eight flukes were extracted from infected animals and DNA was successfully amplified from all flukes. Overall 12 different DNA sequences were obtained. BLAST search showed that all obtained sequences were F. hepatica and had >97% similarity with F. hepatica isolates from Tanzania, Europe and Iran. Phylogenetic analysis of the obtained sequences showed that Fasciola isolates from the current study were clustered in one subclade closely related to isolates from North and South Africa and Italy. Conclusion: Reports on the molecular characterization of Fasciola spp. in Saudi Arabia are limited. In the current study, our findings showed that F. hepatica was the only Fasciola species parasitizing cattle in Jeddah city, Saudi Arabia. Further studies using a large number of samples from different localities in Saudi Arabia are needed to provide data that will help the development of control measures against fascioliasis.

15.
Front Vet Sci ; 9: 970327, 2022.
Article in English | MEDLINE | ID: mdl-36082215

ABSTRACT

Background: Trichinellosis is a helminthic disease caused by Trichinella spiralis via the ingestion of raw or undercooked meat of infected animals. Current estimates indicate that 11 million humans have trichinellosis, worldwide. The effective use of anti-trichinella medications is limited by side effects and resistance which highlight the critical need for safe and effective drugs, particularly those derived from medicinal plants. Therefore, in the present study, we aimed to evaluate the efficacy of the ethanolic extract of Artemisia annua (A. annua) in treatment of experimentally induced trichinellosis. Materials and methods: Trichinellosis was induced experimentally in male 6-8 weeks BALB/c mice. BALB/c mice were divided into four groups, 10 mice each. One group was left uninfected and untreated, whereas three groups were infected with T. spiralis. One infected group of mice was left untreated (negative control) while the remaining two infected groups received either 300 mg/kg of the ethanolic extract of A. annua or 50 mg/kg of albendazole (positive control). All treatments started from the third day post-infection (dpi) for 3 successive days. All animals were sacrificed on the 7th dpi for evaluation of treatment efficacy. Results: Our findings showed that A. annua treatment reduced the T. spiralis adult-worm count in the intestine of infected animals. Moreover, treatment with A. annua restored the normal intestinal architecture, reduced edema, alleviated inflammation as demonstrated by reduced inflammatory infiltrate and expression of TGF-ß in intestinal tissues of A. annua-treated animals compared to infected untreated animals. Conclusions: Our findings show that A. annua extract is effective in treating experimentally induced trichinellosis which highlight the therapeutic potential of A. annua for intestinal trichinellosis.

16.
Int J Gen Med ; 15: 6945-6963, 2022.
Article in English | MEDLINE | ID: mdl-36068791

ABSTRACT

Background: A good understanding of the possible risk factors for coronavirus disease 19 (COVID-19) severity could help clinicians in identifying patients who need prioritized treatment to prevent disease progression and adverse outcome. In the present study, we aimed to correlate clinical and laboratory characteristics of hospitalized COVID-19 patients to disease outcome in Saudi Arabia. Materials and Methods: The present study included 199 COVID-19 patients admitted to King Fahd Specialist Hospital, Buraydah, Qassim, Saudi Arabia, from April to December 2020. Patients were followed-up until discharge either for recovery or death. Demographic data, clinical data and laboratory results were retrieved from electronic patient records. Results: Critical COVID-19 cases showed higher mean of age and higher prevalence of co-morbid conditions. Fifty-five patients died during the observation period. Risk factors for in hospital death for COVID 19 patients were leukocytosis (OR 1.89, 95% CI 1.008-3.548, p = 0.081), lymphocytopenia (OR 2.152, 95% CI 1.079-4.295, p = 0.020), neutrophilia (OR 1.839, 95% CI 0.951-3.55, p = 0.047), thrombocytopenia (OR 2.152, 95% CI 0.852-5.430, p = 0.085), liver injury (OR 2.689, 95% CI 1.373-4.944, p = 0.003), acute kidney injury (OR 1.248, 95% CI 0.631-2.467 p = 0.319), pancreatic injury (OR 1.973, 95% CI 0.939-4.144, p = 0.056) and high D dimer (OR 2.635, 95% CI 0.747-9.287, p = 0.091). Conclusion: Clinical and laboratory data of COVID-19 patients may help understanding the pathogenesis of the disease and subsequently improve of the outcome of patients by determination of the associated risk factors and recognition of high risk group who are more liable for complications and in hospital death. The present study put an eye on some parameters (laboratory and clinical) that should be alarming signs that the patient is at high risk bad prognosis.

17.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145384

ABSTRACT

Anti-leishmanial drugs extracted from natural sources have not been sufficiently explored in the literature. Until now, leishmaniasis treatments have been limited to synthetic and expensive drugs. This study investigated, for the first time, the anti-leishmanial efficacy of essential oils (EOs) from the leaves of Citrus species (C. sinensis, C. limon, and C. clementina). Essential oils were extracted from three species by solvent free microwave extraction (SFME); in addition, lemon oil was also isolated by hydro-distillation (HD). These were investigated using gas chromatography coupled with mass spectrometry (GC-MS) and evaluated against Leishmania species, namely Leishmania major and Leishmania infantum, using a mitochondrial tetrazolium test (MTT) assay. The chemical compositions of Citrus limon EOs obtained by HD and SFME showed some differences. The identified peaks of C. limon (SFME) represented 93.96%, where linalool was the major peak (44.21%), followed by sabinene (14.22%) and ocimene (6.09%). While the hydro-distilled oil of C. limon contained geranial (30.08%), limonene (27.09%), and neral (22.87%) in the identified peaks (96.67%). The identified components of C. clementina leaves oil (68.54%) showed twenty-six compounds, where the predominant compound was geranial (42.40%), followed by neral (26.79%) and limonene (14.48%). However, 89.82% C. sinensis oil was identified, where the major peaks were for neral (27.52%), linalool (25.83%), and geranial (23.44%). HD oil of lemon showed the highest activity against L. major, with moderate toxicity on murine macrophage (RAW 264.7) cells, and possessed the best selectivity index on both Leishmanial species (SI: 3.68; 6.38), followed by C. clementina oil and C. limon using SFME (0.9 ± 0.29, 1.03 ± 0.27, and 1.13 ± 0.3), respectively. C. clementina oil induced the greatest activity on Leishmania infantum, followed by HD lemon and SFME lemon oils (0.32 ± 0.18, 0.52 ± 0.15, and 0.57 ± 0.09, respectively) when compared to Amphotericin B (0.80 ± 0.18 and 0.23 ± 0.13) as a positive control, on both species, respectively. Our study suggests a potent anti-leishmanial activity of lemon oil (HD) on L. major, followed by C. clementina. With the same potency on L. infantum shown by C. clementina oil, followed by HD lemon oil. This effect could be attributed to the major compounds of limonene, citral, and neral, as well as the synergistic effect of other different compounds. These observations could be a starting point for the building of new anti-leishmanial drugs from natural origins, and which combine different EOs containing Citrus cultivars.

18.
Vaccines (Basel) ; 10(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35891291

ABSTRACT

Antimicrobial resistance has become a significant health issue because of the misuse of antibiotics in our daily lives, resulting in high rates of morbidity and mortality. Hafnia alvei is a rod-shaped, Gram-negative and facultative anaerobic bacteria. The medical community has emphasized H. alvei's possible association with gastroenteritis. As of now, there is no licensed vaccine for H. alvei, and as such, computer aided vaccine design approaches could be an ideal approach to highlight the potential vaccine epitopes against this bacteria. By using bacterial pan-genome analysis (BPGA), we were able to study the entire proteomes of H. alvei with the aim of developing a vaccine. Based on the analysis, 20,370 proteins were identified as core proteins, which were further used in identifying potential vaccine targets based on several vaccine candidacy parameters. The prioritized vaccine targets against the bacteria are; type 1 fimbrial protein, flagellar hook length control protein (FliK), flagellar hook associated protein (FlgK), curli production assembly/transport protein (CsgF), fimbria/pilus outer membrane usher protein, fimbria/pilus outer membrane usher protein, molecular chaperone, flagellar filament capping protein (FliD), TonB-dependent hemoglobin /transferrin/lactoferrin family receptor, Porin (OmpA), flagellar basal body rod protein (FlgF) and flagellar hook-basal body complex protein (FliE). During the epitope prediction phase, different antigenic, immunogenic, non-Allergenic, and non-Toxic epitopes were predicted for the above-mentioned proteins. The selected epitopes were combined to generate a multi-epitope vaccine construct and a cholera toxin B subunit (adjuvant) was added to enhance the vaccine's antigenicity. Downward analyses of vaccines were performed using a vaccine three-dimensional model. Docking studies have confirmed that the vaccine strongly binds with MHC-I, MHC-II, and TLR-4 immune cell receptors. Additionally, molecular dynamics simulations confirmed that the vaccine epitopes were exposed to nature and to the host immune system and interpreted strong intermolecular binding between the vaccine and receptors. Based on the results of the study, the model vaccine construct seems to have the capacity to produce protective immune responses in the host, making it an attractive candidate for further in vitro and in vivo studies.

19.
Pathogens ; 11(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35890042

ABSTRACT

Background:Toxoplasma gondii (T. gondii) is an opportunistic parasite that causes serious diseases in humans, particularly immunocompromised individuals and pregnant women. To date, there are limited numbers of therapeutics for chronic toxoplasmosis which necessitate the discovery of effective and safe therapeutics. In the present study, we aimed to evaluate the antitoxoplasmosis potential of ginger extract in mice with experimentally induced chronic toxoplasmosis. Results: Treatment with ginger extract significantly reduced cysts count in the brains of T. gondii-infected mice with a marked alleviation of edema and inflammation, and a reversal of neuronal injury. Moreover, ginger extract treatment reduced inflammation in liver and lungs and protected hepatocytes from infection-induced degeneration. Consistently, apoptosis was significantly mitigated in the brains of ginger extract-treated mice compared to infected untreated animals or spiramycin-treated animals. Methods: Four groups of Swiss albino mice (10 mice each) were used. The first group was not infected, whereas 3 groups were infected with Me49 T. gondii strains. One infected group remained untreated (infected untreated), whereas the other two infected groups were treated with either ginger extract (250 mg/kg) or spiramycin (positive control; 100 mg/kg), respectively. The therapeutic potential of ginger extract was evaluated by calculation of the parasite burden in infected animals, and examination of the infected tissues for reduced pathologic changes. Conclusions: Our results showed for the first time that ginger extract exhibited marked therapeutic effects in mice with chronic T. gondii infection which indicates that it can be used as a safe and effective treatment for chronic toxoplasmosis.

20.
Vaccines (Basel) ; 10(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35746494

ABSTRACT

Enterobacter cloacae (EC) is a significant emerging pathogen that is occasionally associated with lung infection, surgical site infection, urinary infection, sepsis, and outbreaks in neonatal intensive care units. In light of the fact that there is currently no approved vaccine or therapeutic option for the treatment of EC, the current study was developed to concentrate on applications based on modern computational approaches to design a multi-epitope-based E. cloacae peptide vaccine (MEBEPV) expressing the antigenic determinants prioritized from the EC genome. Integrated computational analyses identified two potential protein targets (phosphoporin protein-PhoE and putative outer-membrane porin protein) for further exploration on the basis of pangenome subtractive proteomics and immunoinformatic in-depth examination of the core proteomes. Then, a multi-epitope peptide vaccine was designed, which comprised shortlisted epitopes that were capable of eliciting both innate and adaptive immunity, as well as the cholera toxin's B-subunit, which was used as an adjuvant in the vaccine formulation. To ensure maximum expression, the vaccine's 3D structure was developed and the loop was refined, improving the stability by disulfide engineering, and the physicochemical characteristics of the recombinant vaccine sequence were found to be ideal for both in vitro and in vivo experimentation. Blind docking was then used for the prediction of the MEBEPV predominant blinding mode with MHCI, MHCII, and TLR3 innate immune receptors, with lowest global energy of -18.64 kJ/mol, -48.25 kJ/mol, and -5.20 kJ/mol for MHC-I, MHC-II, and TLR-4, respectively, with docked complexes considered for simulation. In MD and MMGBSA investigations, the docked models of MEBEPV-TLR3, MEBEPV-MHCI, and MEBEPV-MHCII were found to be stable during the course of the simulation. MM-GBSA analysis calculated -122.17 total net binding free energies for the TLR3-vaccine complex, -125.4 for the MHC I-vaccine complex, and -187.94 for the MHC II-vaccine complex. Next, MM-PBSA analysis calculated -115.63 binding free energy for the TLR3-vaccine complex, -118.19 for the MHC I-vaccine complex, and -184.61 for the MHC II-vaccine complex. When the vaccine was tested in silico, researchers discovered that it was capable of inducing both types of immune responses (cell mediated and humoral) at the same time. Even though the suggested MEBEPV has the potential to be a powerful contender against E. cloacae-associated illnesses, further testing in the laboratory will be required before it can be declared safe and immunogenic.

SELECTION OF CITATIONS
SEARCH DETAIL
...